Statistische fysica

Statistical Physics

6 EC

Semester 2, periode 5

5092STFY6Y

Eigenaar Bachelor Natuur- en Sterrenkunde (joint degree)
Coördinator Peter Schall
Onderdeel van Dubbele bachelor Wis- en Natuurkunde, jaar 2Bachelor Natuur- en Sterrenkunde (joint degree), jaar 2

Studiewijzer 2020/2021

Globale inhoud

Learning goals: The overall goal for this course is to introduce students to the foundational topics and calculation methods of thermodynamics and statistical physics. This provides an essential basis for the students to be able to take more advanced theoretical and practical courses in physics over a broad range of disciplines.

1. Grasping and relating key thermodynamics concepts Explain key concepts such as entropy, free energies and thermodynamics potentials, and describe how they are related and under which conditions they are relevant. Students can interpret the laws of thermodynamics. They can apply all these key thermodynamics concepts to calculate properties of simple examples like ideal gasses.

2. Applying thermodynamics to heat engines and refrigerators Students are able to use basic thermodynamic concepts to analyze warming and cooling cycles, and they are able to understand what determines their optimal efficiency. Students can analyze idealized cases such as the Carnot cycle using PV and TS-diagrams, and compute their efficiency. They will then also be able to apply these ideas to real-life engines and refrigerators.

3. Describing phase transitions using thermodynamics Understand how to use concepts such as heat, entropy, latent heat and heat capacity to describe the thermodynamics of first-order phase transitions. They will be able to apply these ideas to key examples such as the van der Waals gas and de-mixing transitions in mixtures.

4. Deriving and applying Boltzmann statistics Students can use concepts such as microstates and the postulate of equal probability to describe the statistical physics of systems at fixed energy or at fixed temperature. An important step will be to learn how to make approximations when dealing with large numbers (Stirling’s approximation). They will be able to relate the number of microstates to entropy, and discuss the concept of a heat bath. From the maximum entropy principle, students can derive a definition of temperature and the Boltzmann distribution.

5.Distinguishing and employing Statistical Ensembles Students know the difference between distinct statistical ensembles, which to apply under which condition, and how these ensembles are related to the thermodynamics potentials. They will also be able to determine the partition function and know how to use it to determine important thermodynamic characteristics of a system. Using this statistical physics approach, the students can derive basic results like the gas law and the properties of simple non-interacting systems like a paramagnet.

6.Understanding the basics of Quantum statistics, properties of quantum gasses, and interacting systems Students can describe and apply concepts such as Density of States, the Bose-Einstein Distribution and the Fermi-Dirac Distribution. They can use this theory to understand examples such as Blackbody Radiation, the Debye Model of Vibrations in a Solid and Bose-Einstein Condensation. Finally, students will be able to apply mean-field theory to analyze simple interacting systems, like the Ising model.

7.Logic of key derivations, applications, and connections between thermodynamics and statistical physics Students can indicate the key logical steps in the derivations of the main results in this course. They know the central equations and can apply them to simple examples. Students can describe the relation between the phenomenological thermodynamic approach and statistical physics.

Studiemateriaal

Literatuur

  • D.V. Schroeder, 'Introduction to thermal physics', Addison Wesley Longman, 1999, tweede helft.

Leerdoelen

  • Begrijpen van onderwerpen zoals vrije energie, faseovergangen, mengsels, ensembles, statistiek en quantum statistiek, quantum vaste stoffen, quantum gassen.
  • Beheersen van vaardigheden om problemen hierover op te lossen.

Onderwijsvormen

  • Hoorcollege
  • Werkcollege

Hoorcollege en werkcollege.

Verdeling leeractiviteiten

Activiteit

Aantal uur

Deeltoets

6

Hoorcollege

28

Werkcollege

28

Zelfstudie

106

Aanwezigheid

Aanwezigheidseisen opleiding (OER-B):

  • Van elke student wordt actieve deelname verwacht aan het onderwijsonderdeel waarvoor hij staat ingeschreven. Een student die de eerste twee werkcolleges van een lesblok geen gebruik maakt van de werkcolleges, zal administratief uit de werkcollegegroep verwijderd worden. Een verzoek opnieuw ingeschreven te worden bij de werkcolleges kan ingediend worden bij de opleidingscoördinator.
  • Als een student door overmacht niet aanwezig kan zijn bij een verplicht onderdeel van het onderdeel, dient hij dit zo snel mogelijk schriftelijk te melden bij de betreffende docent. De docent kan, eventueel na overleg met de studieadviseur, besluiten om de student een vervangende opdracht op te leggen.
  • Het is niet toegestaan om verplichte onderdelen van een onderdeel te missen als er geen sprake is van overmacht.
  • Bij kwalitatief of kwantitatief onvoldoende deelname, kan de examinator de student uitsluiten van verdere deelname aan het onderdeel of een gedeelte daarvan. Voorwaarden voor voldoende deelname worden van te voren vastgelegd in de studiewijzer.
  • Ter uitbreiding van de bovenstaande regels geldt voor de vakken in het eerste semester van het eerste jaar dat een student bij minimaal 80% van de werkcolleges aanwezig dient te zijn. Bovendien moet worden deelgenomen aan eventuele tussentoetsen en verplicht gesteld huiswerk. Als niet aan deze verplichting is voldaan, wordt de student uitgesloten voor de herkansing van het bijbehorende vak. Studenten in het Dubbele Bachelor programma Wis- en Natuurkunde zijn vrijgesteld van deze plicht. In geval van persoonlijke omstandigheden, zoals in OER-A Artikel A-6.4 omschreven, wordt in overleg met de studieadviseur een afwijkend studieplan gemaakt.

Toetsing

Onderdeel en weging Details

Eindcijfer

40%

Deeltoets 1

60%

Deeltoets 2

Fraude en plagiaat

Dit vak hanteert de algemene 'Fraude- en plagiaatregeling' van de UvA. Hier wordt nauwkeurig op gecontroleerd. Bij verdenking van fraude of plagiaat wordt de examencommissie van de opleiding ingeschakeld. Zie de Fraude- en plagiaatregeling van de UvA: http://student.uva.nl

Weekplanning

Weeknummer Onderwerpen Studiestof (Schroder)
1

Thermodynamic efficiency and cycles,

Steam engine, real Refrigerators,

Thermodyn. potentials

4.1-4.2

4.3-5.2

 

2

Thermodynamic Potentials, Phase transformations

Clausius Clapeyron, Van der Waals model,

Phase transformation of mixtures

5.3

5.4

 

3

Eutectic mixtures, Chemical equilibrium

Canonical and Microcanonical ensemble, Partition function and averages

Deeltoets 1

5.5-5.6

6.1-6.2

4

Boltzmann statistics

Composite systems, (In)distinguishable particles, Ideal gas

6.6-6.7
5

Grand canonical ensemble, Quantum statistics for Bosons and Fermions

Fermi gas and degeneracy pressure, Density of states

7.1-7.2

7.3

6

Black body radiation and the Planck distribution, Entropy of photon gas, Debye solid

Bose-Einstein condensation

7.4-7.5

7.6

7 Interacting systems: the Ising model and critical phenomena, Mean field approximation 8.2
8 Deeltoets 2  

Rooster

Het rooster van dit vak is in te zien op DataNose.

Aanvullende informatie

Dit college sluit aan op het vak Thermische fysica.

Aanbevolen voorkennis: Klassieke mechanica, Quantumfysica 1 en 2, Thermische fysica.

Verwerking vakevaluaties

Hieronder vind je de aanpassingen in de opzet van het vak naar aanleiding van de vakevaluaties.

Contactinformatie

Coördinator

  • Peter Schall