6 EC
Semester 1, periode 1
5082BSFM6Y
Eigenaar | Bachelor Kunstmatige Intelligentie |
Coördinator | Daniel Worrall |
Onderdeel van | Minor Kunstmatige Intelligentie, jaar 1Bachelor Kunstmatige Intelligentie, jaar 2 |
Modern machine learning methods are based on mathematical concepts, especially from probability theory and statistics. This course treats these concepts in detail, through the spectrum of the Bayesian school of thought in machine learning. This will lay the groundwork for a solid understanding of advanced machine learning methods taught in other courses. Additionally, the mathematical theory will be made more concrete through programming exercises.
http://www.inference.org.uk/itprnn/book.pdf
http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf
Activiteit |
Uren |
|
Deeltoets |
4 |
|
Hoorcollege |
24 |
|
Laptopcollege |
4 |
|
Werkcollege |
20 |
|
Zelfstudie |
116 |
|
Totaal |
168 |
(6 EC x 28 uur) |
Aanwezigheidseisen opleiding (OER-B):
Aanvullende eisen voor dit vak:
n/a
Onderdeel en weging | Details |
Eindcijfer | |
0.35 (35%) Deeltoets 1 | |
0.35 (35%) Deeltoets 2 | |
0.3 (30%) Homework |
Dit vak hanteert de algemene 'Fraude- en plagiaatregeling' van de UvA. Hier wordt nauwkeurig op gecontroleerd. Bij verdenking van fraude of plagiaat wordt de examencommissie van de opleiding ingeschakeld. Zie de Fraude- en plagiaatregeling van de UvA: http://student.uva.nl
Homework must be handed in before 23:59 the Sunday after it is set. PDFs only---handwritten answers are fine, but must be scanned in and legible.
Het rooster van dit vak is in te zien op DataNose.
This course will be delivered in English