Bayesian Statistics for Machine Learning

6 EC

Semester 1, periode 1

5082BSFM6Y

Eigenaar Bachelor Kunstmatige Intelligentie
Coördinator Daniel Worrall
Onderdeel van Minor Kunstmatige Intelligentie, jaar 1Bachelor Kunstmatige Intelligentie, jaar 2

Studiewijzer 2019/2020

Globale inhoud

Modern machine learning methods are based on mathematical concepts, especially from probability theory and statistics. This course treats these concepts in detail, through the spectrum of the Bayesian school of thought in machine learning. This will lay the groundwork for a solid understanding of advanced machine learning methods taught in other courses. Additionally, the mathematical theory will be made more concrete through programming exercises.

Studiemateriaal

Literatuur

  • http://www.inference.org.uk/itprnn/book.pdf

  • http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf

Leerdoelen

  • Understand the frequentist and Bayesian statistical frameworks
  • Understand and manipulate random variables (expectations, moments, etc.)
  • Be able to manipulate probabilistic expressions using the laws of probability
  • Understand sample spaces and basic probability measures built on them
  • Derive formulas for probability distributions (in particular including posterior, predictive, and marginal likelihood distributions in Bayesian statistics) using the operations of marginalization and conditioning
  • Interpret the implications of properties of the prior, posterior and predictive distributions
  • Be able to compare models in the Bayesian framework
  • Be comfortable deriving and manipulating conjugate distributions

Onderwijsvormen

  • Hoorcollege
  • Werkcollege
  • Laptopcollege

Verdeling leeractiviteiten

Activiteit

Uren

Deeltoets

4

Hoorcollege

24

Laptopcollege

4

Werkcollege

20

Zelfstudie

116

Totaal

168

(6 EC x 28 uur)

Aanwezigheid

Aanwezigheidseisen opleiding (OER-B):

  • Voor practica en werkgroepbijeenkomsten met opdrachten geldt een aanwezigheidsplicht. De invulling van deze aanwezigheidsplicht kan per vak verschillen en staat aangegeven in de studiewijzer. Wanneer studenten niet voldoen aan deze aanwezigheidsplicht kan het onderdeel niet met een voldoende worden afgerond.

Aanvullende eisen voor dit vak:

n/a

Toetsing

Onderdeel en weging Details

Eindcijfer

0.35 (35%)

Deeltoets 1

0.35 (35%)

Deeltoets 2

0.3 (30%)

Homework

  • You must have a minimum of 5.5 in your homework and a minimum of 5.5 in your combined exams to pass the course
  • All homeworks count towards the final mark.
  • There is a penalty of 25% per day for late hand-ins, with a maximum cut-off of 2 days. This penalty may be waived in case of sickness, but we may need proof from the studieadviseur
  • Cheatsheets are not allowed in the exams, but we provide a formula list

Inzage toetsing

  • Deeltoets marks will be released on ANS
  • After the release of marks on ANS, students have 1 week to ask questions regarding their marks

Opdrachten

  • Assignments are graded and individual
  • Individual homework grades will be released on Canvas, along with written feedback

Fraude en plagiaat

Dit vak hanteert de algemene 'Fraude- en plagiaatregeling' van de UvA. Hier wordt nauwkeurig op gecontroleerd. Bij verdenking van fraude of plagiaat wordt de examencommissie van de opleiding ingeschakeld. Zie de Fraude- en plagiaatregeling van de UvA: http://student.uva.nl

Weekplanning

Homework must be handed in before 23:59 the Sunday after it is set. PDFs only---handwritten answers are fine, but must be scanned in and legible.

Rooster

Het rooster van dit vak is in te zien op DataNose.

Aanvullende informatie

This course will be delivered in English

Verwerking vakevaluaties

Hieronder vind je de aanpassingen in de opzet van het vak naar aanleiding van de vakevaluaties.

Contactinformatie

Coördinator

  • Daniel Worrall