6 EC
Semester 1, periode 1
5082PTFM6Y
Modern machine learning methods are based on mathematical concepts, especially from probability theory and statistics. This course treats these concepts in detail. This will lay the groundwork for a solid understanding of advanced machine learning methods taught in other courses. Additionally, the mathematical theory will be made more concrete through programming exercises.
Material will be made available digitally
At the end of the course, the student is able to:
All examinable material will be presented in the hoorcolleges. This material will be reinforced in the werkcollege and laptopcollege sessions.
Activiteit | Uren | |
Deeltoets | 4 | |
Hoorcollege | 24 | |
Laptopcollege | 12 | |
Vragenuur | 2 | |
Werkcollege | 12 | |
Zelfstudie | 114 | |
Totaal | 168 | (6 EC x 28 uur) |
Aanwezigheidseisen opleiding (OER-B):
Aanvullende eisen voor dit vak:
The student must hand in at least 5 out of 6 werkcollege homeworks and 5 out of 6 laptopcollege homeworks to be eligible to pass the course.
Onderdeel en weging | Details |
Eindcijfer | |
15% Homework | |
15% Laptop homework | |
35% Midterm exam | |
35% Final exam |
Annoucements will be made on Canvas.
6 written homeworks and 6 laptop homeworks. Everything is graded. Group submissions are forbidden. Feedback will be via Canvas.
Dit vak hanteert de algemene 'Fraude- en plagiaatregeling' van de UvA. Hier wordt nauwkeurig op gecontroleerd. Bij verdenking van fraude of plagiaat wordt de examencommissie van de opleiding ingeschakeld. Zie de Fraude- en plagiaatregeling van de UvA: http://student.uva.nl
Written homeworks: Monday 14:59 the week after being set.
Laptop homeworks: Wednesday 14:59 the week after being set
Het rooster van dit vak is in te zien op DataNose.
Aanbevolen voorkennis: Students are expected to have sufficient knowledge of the following topics: basis calculus, and basic linear algebra (as taught in the first year KI courses); basic programming skills (in Python/numpy).
The course will be given in English.