Studiewijzer 2017/2018

Globale inhoud

  • Logic, knowledge, learning and belief representation and reasoning. The modal logic of knowledge and belief. Information flow: knowledge updates, belief change, communication. Notions of Dynamic Epistemic Logic.
  • Common sense reasoning: Default Reasoning and Non-monotonic Logics. Belief Revision Theory.
  • Logic in Multi-Agent Systems: logics for agency, cooperation and planning. 

Studiemateriaal

Literatuur

  • A. Baltag, H. P. van Ditmarsch and L.S. Moss, Epistemic logic and information update, in the 'Handbook of Philosophy of Information' (Editors: P. Adriaans and J. van Benthem), part of 'Handbook of Philosophy of Science', vol. 8, pp. 361-455, Elsevier, 2008. A link to this content will be made available on Blackboard.

  • Optional: H. P. van Ditmarsch, W. van der Hoek and B. Kooi, Dynamic Epistemic Logic, Springer, 2007.

  • Optional: J.-J.Ch. Meyer &W. van der Hoek, 'Epistemic Logic for AI and Computer Science', Cambridge Tracts in Theoretical Computer Science 41, Cambridge University Press (1995) ISBN 0 521 46014.

  • Optional: 'Stanford Encyclopedia of Philosophy'. At http://plato.stanford.edu/ . In particular: the articles on ``Dynamic Epistemic Logic", ``Non-monotonic Logic", ``Defeasible Reasoning: Belief Revision" and ``Logics of Belief Revision".

  • Optional: Y. Shoam and K Leyton-Brown, 'Multi-agent Systems: algorithmic, game-theoretic and logical foundations'.

  • Optional: R. Fagin, J, Halpern, Y. Moses, M. Vardi.'Reasoning about Knowledge', MIT Press, 1995.

  • Optional: J. van Benthem, 'Logical Dynamics of Information and Interaction', Cambridge Univ Press, 2011.

Overig

  • Slides will be available on Blackboard after each lecture.

Leerdoelen

The overall aim of this course is to introduce students to the computational-logical aspects of knowledge and information flow, and to applications of Logic to AI. By the end of the course, students should be able to:

  • demonstrate an understanding of the basic concepts and tools in computational logic by being able to define them and use them  to reason about AI applications.
  • be able to build logical models for various AI problems, e.g. knowledge updating, planning, communication etc.

Onderwijsvormen

  • Hoorcollege
  • Werkcollege

The course consists of lectures (hoorcolleges) and practical sessions (werkcolleges). In the practical sessions students will work in pairs on exercises related to the contents introduced during the lectures.

Verdeling leeractiviteiten

Activiteit

Aantal uur

Hoorcollege

24

Tentamen

2

Tussentoets

2

Werkcollege

24

Zelfstudie

116

Aanwezigheid

Aanwezigheidseisen opleiding (OER-B):

  • Voor practica en werkgroepbijeenkomsten met opdrachten geldt een aanwezigheidsplicht. De invulling van deze aanwezigheidsplicht kan per vak verschillen en staat aangegeven in de studiewijzer. Wanneer studenten niet voldoen aan deze aanwezigheidsplicht kan het onderdeel niet met een voldoende worden afgerond. .

Toetsing

Onderdeel en weging Details

Eindcijfer

30%

Homework

35%

Partial exam 1

35%

Partial exam 2

Two exams: done individually; each of them contributes 35% to the final grade. Weekly homework exercises: can be done in pairs; they contribute 30% to the final grade. The answers to exercises have to be typed in LaTex. To pass the course, the final grade should be bigger than 4.5.  

Fraude en plagiaat

Dit vak hanteert de algemene 'Fraude- en plagiaatregeling' van de UvA. Hier wordt nauwkeurig op gecontroleerd. Bij verdenking van fraude of plagiaat wordt de examencommissie van de opleiding ingeschakeld. Zie de Fraude- en plagiaatregeling van de UvA: www.uva.nl/plagiaat

Rooster

Het rooster van dit vak is in te zien op DataNose.

Aanvullende informatie

  • The course is taught in English.
  • Recommended prior knowledge: Basic knowledge in mathematics and logic (in particular, propositional logic and predicate logic).

Contactinformatie

Coördinator

  • dr. A. Baltag