Machine Learning for Structured Data
6 EC
Semester 1, periode 1
5083MLVG6Y
Eigenaar | Bachelor Kunstmatige Intelligentie |
Coördinator | dr. Vlad Niculae |
Onderdeel van | Bachelor Kunstmatige Intelligentie, jaar 3Bachelor Bèta-gamma, major Kunstmatige Intelligentie, jaar 3 |
This course prepares you for handling structured inputs and outputs in deep machine learning applications. Real-world data is complex but highly structured. Natural language is organized hierarchically into units such as sentences, phrases, and words. Natural images show objects in various spatial relationships to each other. Our very DNA is made up of small discrete units that combine in complex ways. In all these cases, long-distance dependencies and constraints are essential. This course will prepare you to use machine learning and deep neural networks to model complex, structured phenomena. By marrying machine learning with models of symbolic, global structure, we get hybrid approaches that are the best of both words.
In standard (unstructured) ML, the focus is on classification and regression problems from vector representations of data. This course covers both main situations where structure enters a model:
We will study models, learning algorithms, and evaluation methods for handling structured inputs and outputs in machine learning.
Activiteit |
Uren |
|
Hoorcollege |
28 |
|
Laptopcollege |
28 |
|
Tentamen |
2 |
|
Zelfstudie |
110 |
|
Totaal |
168 |
(6 EC x 28 uur) |
Aanwezigheidseisen opleiding (OER-B):
Onderdeel en weging | Details |
Eindcijfer | |
0.4 (40%) Tentamen | Moet ≥ 5 zijn |
0.4 (40%) Assignments | Moet ≥ 5 zijn |
0.5 (50%) Assignment 1 | |
0.5 (50%) Assignment 2 | |
0.2 (20%) Quizzes and readings |
In addition to the standard threshold on the final grade (per OER), we also require
Individual assignments, graded.
Feedback via lab sessions.
Dit vak hanteert de algemene 'Fraude- en plagiaatregeling' van de UvA. Hier wordt nauwkeurig op gecontroleerd. Bij verdenking van fraude of plagiaat wordt de examencommissie van de opleiding ingeschakeld. Zie de Fraude- en plagiaatregeling van de UvA: http://student.uva.nl
As this is the first edition of the course, the planning is only tentative.
Week number | Tentative topic |
1 |
introduction to structured data and representations, ML recap |
2-3 | encoding structured input data. (features, graph neural networks, transformers…) |
4-5 | structured outputs, probabilities over structures, structured perceptrons |
6 | combinatorial optimization, ILP formulations: assignments, flows |
7 | slack time / recap |
Het rooster van dit vak is in te zien op DataNose.
Hieronder vind je de aanpassingen in de opzet van het vak naar aanleiding van de feedback van studenten.