6 EC
Semester 1, period 1, 2
51228DIF6Y
This course is an introduction to the theory of smooth manifolds and differential-geometric structures on them. We'll discuss smooth manifolds, smooth maps, tangent and cotangent bundles, submanifolds, Whitney's embedding and approximation theorems, more general tensors, differential forms, integration, de Rham cohomology, integral curves and manifolds, Lie derivatives, Lie groups, and Lie algebras.
John M. Lee. Introduction to smooth manifolds. Second Edition. Graduate Texts in Mathematics 218. Springer
Activiteit |
Aantal uur |
Hoorcollege |
28 |
Werkcollege |
28 |
Tussentoets |
2 |
Tentamen |
3 |
Zelfstudie |
107 |
Programme's requirements concerning attendance (OER-B):
Item and weight | Details |
Final grade | |
20% Huiswerk | |
20% Tussentoets | |
60% Tentamen | Must be ≥ 5.5 |
Naast eindtentamen en de tussentoets krijgen de studenten 12 keer huiswerk. Het cijfer voor het huiswerk is de gemiddelde van de beste 10 (uit 12) huiswerkcijfers. Het is ook vereist om ten minste 5,5 voor het tentamen te krijgen om het vak te halen.
Het eindcijfer is 0,6*Tentamen+0,2*Tussentoets+0,2*Huiswerk. Het eindcijfer na de herkansing is 1,0*Hertentamen.
The 'Regulations governing fraud and plagiarism for UvA students' applies to this course. This will be monitored carefully. Upon suspicion of fraud or plagiarism the Examinations Board of the programme will be informed. For the 'Regulations governing fraud and plagiarism for UvA students' see: www.student.uva.nl
Weeknummer | Onderwerpen | Studiestof |
1 | Definitions of topological manifold, smooth manifold, examples (Chapter 1 of the book). | |
2 |
Regular coordinate balls, smooth manifold chart lemma, more examples, manifolds with boundary (Chapter 1 of the book.) |
|
3 | Smooth functions, partition of unity, applications of the partition of unity (Chapter 2). | |
4 | Applications of partition of unity (Chapter 2). Tangent vectors and bundle. (Chapters 3). | |
5 | Tangent vectors and bundle (Chapters 3). Smooth maps of constant rank (Chapter 4). | |
6 |
Smooth maps of constant rank, constant rank theorem, smooth coverings (Chapter 4). |
|
7 | Further details on smooth coverings (Chapter 4). Submanifolds, Whitney theorem (parts of Chapters 5, 6). | |
8 |
Embedding in a Euclidian space. Smooth vector fields and related algebraic structures (parts of Chapter 8). |
|
9 | Smooth vector fields and related algebraic structures (parts of Chapter 8). Integral curves and flows of vector fields (Sections "Integral curves" and "Flows" of Chapter 9). | |
10 | Flows of vector fields. Their usage for differentiation of functions and vector fields (Parts of Chapter 9). | |
11 | Lie derivative. Canonical form of a vector field near a regular point. (Parts of Chapter 9). An introduction to multilinear algebra (Chapter 12, sections "Multilinear algebra" and "Symmetric and alternating tensors"). | |
12 | Alternating tensors (Chapter 14, section "The Algebra of Alternating Tensors"). Vector bundles, sections (very briefly; Chapter 10, sections "Vector bundles" and "Local and Global Sections of Vector Bundles"). Differential forms (Chapter 14, section "Differential Forms on Manifolds"). | |
13 | Differential form as differential graded commutative associative algebra, de Rham differential (Chapter 14). Orientation (Chapter 15). | |
14 | Induced orientation on the boundary. Integration on manifolds, Stokes theorem. (Chapter 16). |
The schedule for this course is published on DataNose.
Analysis on R^n, Topology