6 EC
Semester 2, period 4
5062INCS6Y
Owner | Bachelor Informatica |
Coordinator | dr. Valeria Krzhizhanovskaya |
Part of | Bachelor Informatica, year 2Dubbele bachelor Wiskunde en Informatica, year 2 |
This course will focus on modelling real world phenomena, ranging from physical to sociological processes. After an introduction to modelling and simulation as the third paradigm of science, we cover three methods for modelling real world systems: cellular automata, ordinary differential equations, and complex networks. The course provides basic understanding of each method and their relations, and introduces well-known examples for each approach. Every now and then we will derive some mathematical results such as integrating a simple ODE or deriving a diameter of a network structure; a degree mathematical skills are important to a computational modeler. Practical experience is obtained with back-to-back lab assignments, which correspond to the concepts introduced in the weekly lecture material. The preferred programming language is Python. Example modelling assignments include traffic congestion, the flow of gas molecules, and the spreading of infectious diseases through our highly connected society.
Laszlo Barabasi. Network Science. E-Book:
http://barabasi.com/networksciencebook/
Maarten van Steen. Graph Theory and Complex Networks. Available online via http://www.distributed-systems.net/index.php?id=gtcn-copy
David Easley and John Kleinberg. Networks, Crowds, and Markets, reasoning about a highly connected world. Available online via http://www.cs.cornell.edu/home/kleinber/networks-book/
Other papers and reading material will be provided during the course.
There will be two lectures and one computer lab session per week. Additional workshops are arranged in some weeks, to help with the advanced topics in mathematics or programming.
Activiteit | Aantal uur |
Hoorcollege | 28 |
Laptopcollege | 14 |
Werkcollege | 14 |
Vragenuur | 2 |
Digitale Toets | 3 |
Zelfstudie | 107 |
This course is substantively in line with Academic Skills Informatics 2. It is assumed that students of the Bachelor's degree in Computer Science follow both courses simultaneously and part of the study load of this course has been placed with Academic Skills Informatics 2.
Programme's requirements concerning attendance (OER-B):
Additional requirements for this course:
Attending lectures is highly recommended, because they give essential information about the practical assignments. The lecturer also offers small quizzes during the lectures to help understanding new material.
For computer lab sessions ("Laptopcollege") attendance is obligatory. In these sessions, Teaching Assistants explain the assignments and help the students. Questions over email cannot be answered because of the large number of students.
Additional workshops ("Werkcollege") are optional -for students who need extra help or have small questions. Only one Teaching Assistant will be present in these extra sessions.
Item and weight | Details |
Final grade | |
0.4 (40%) Tentamen digitaal | Must be ≥ 5.5 |
0.6 (60%) practical assignments | Must be ≥ 5.5 |
Students are assessed based on their submitted codes and reports for the practical assignments (60%) and a digital exam (40%). A student passes if the exam grade is at least 5.5 and a weighted average of all assignments is also 5.5 (the weights per assignment are given on Canvas).
There is a retake opportunity for the exam, but no retake for the assignments. Low grades in some of the assignments are compensated by the higher grades in other assignments, so students have the opportunity to improve their average grade during the course.
Feedback on assignment reports and exam will be provided in Canvas via the rubric sub-scores and comments from the assessors. Students can discuss assignment results with the Teaching Assistants during the scheduled sessions. Questions about the exam results can be addressed to the Teachers via Canvas.
Over het algemeen geldt dat elke uitwerking die je inlevert ter verkrijging van een beoordeling voor een vak je eigen werk moet zijn, tenzij samenwerken expliciet door de docent is toegestaan. Het inzien of kopiëren van andermans werk (zelfs als je dat hebt gevonden bij de printer, in een openstaande directory of op een onbeheerde computer) of materiaal overnemen uit een boek, tijdschrift, website, code repository of een andere bron - ook al is het gedeeltelijk - en inleveren alsof het je eigen werk is, is plagiaat.
We juichen toe dat je het cursusmateriaal en de opdrachten met medestudenten bespreekt om het beter te begrijpen. Je mag bronnen op het web raadplegen om meer te weten te komen over het onderwerp en om technische problemen op te lossen, maar niet voor regelrechte antwoorden op opgaven. Als in een uitwerking gebruik is gemaakt van externe bronnen zonder dat een bronvermelding is vermeld (bijvoorbeeld in de rapportage of in commentaar in de code), dan kan dat worden beschouwd als plagiaat.
Deze regels zijn er om alle studenten een eerlijke en optimale leeromgeving aan te kunnen bieden. De verleiding kan groot zijn om te plagiëren als de deadline voor een opdracht nadert, maar doe het niet.
Elke vorm van plagiaat wordt bestraft. Als een student ernstige fraude heeft gepleegd, kan dat leiden tot het uitschrijven uit de Universiteit.
Zie voor meer informatie over het fraude- en plagiaatreglement van de Universiteit van Amsterdam: www.student.uva.nl
The schedule for this course is published on DataNose.
In response to student feedback, the mid-term exam is removed. That will help achieving a better workload distribution during the course.
A gradual increase in the assignment complexity is an intended feature, where some of the assignments build upon the previous ones, integrating the acquired skills and knowledge.